Abstract

Organophosphorus insecticide diazinon (DZN) is diffusely used in agriculture, home gardening, and crop peats. Much work so far has focused on the link between DZN exposure and the occurrence of neurological diseases, while little is known on the reproductive toxicological assessment on DZN exposure. This research aimed to investigate the underlying mechanisms of toxic hazards for DZN exposure on cultured porcine ovarian granulosa cells. We analyzed the oxidative stress, energy metabolism, DNA damage, apoptosis, and autophagy by using high-throughput RNA-seq, immunofluorescence, Western blotting, and real-time PCR. The combined data demonstrated that DZN exposure could cause excessive ROS and DNA damage, which induced apoptosis and autophagy by inhibiting the PI3K-AKT pathway. The down-regulated CYP19A1 protein and granulosa cell deaths increase the risk for developing premature ovarian failure and follicular atresia. In conclusion, DZN exposure has obvious reproductive toxicity by induction of granulosa cell death through pathways connected to DNA damage and oxidative stress by inhibiting the PI3K-AKT pathway.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.