Abstract

Background Toxicological assessments of nanoparticles are becoming more and more necessary due to the current rapid increase in interest in them for biomedical applications. This study aimed to synthesize and characterize zinc oxide nanoparticles (ZnONPs) andsilver nanoparticles (AgNPs)using Ocimum tenuiflorum(black tulsi) and Ocimum gratissimum(African basil) herbal formulation extracts and to evaluate their cytotoxic effects. Methods The synthesis of AgNPs and ZnONPs was monitored using UV-visible spectra analysis at different time intervals. The nanoparticles' morphology and elemental composition were examined via scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Furthermore, Fourier-transform infrared spectroscopy (FT-IR) spectra analysis was employed to identify the functional groups within the nanoparticles. The cytotoxic effects of the nanoparticles were evaluated using the brine shrimp lethality assay. Results The UV-visible spectra analysis revealed the successful synthesis of AgNPs and ZnONPs, with maximum absorption peaks observed at 430 nm and 380 nm, respectively. SEM images showed that AgNPs were spherical in shape and tended to agglomerate, while ZnONPs displayed a unique rod-like to short prism shape, and EDX analysis confirmed the presence of both silver and zinc in these nanoparticles, alongside other elements from the herbal extracts. FT-IR analysis indicated the existence of diverse functional groups on the nanoparticles' surfaces. The brine shrimp lethality assay results demonstrated a concentration-dependent cytotoxic effect of the nanoparticles. Conclusion The study successfully synthesized and characterized AgNPsand ZnONPsusing Ocimum tenuiflorumand Ocimum gratissimum herbal formulation extracts. The nanoparticles exhibited significant cytotoxic effects, suggesting their potential applications in various fields. Our results highlight the need for a more discrete use of nanoparticles for biomedical applications. Further studies are needed to explore their potential uses and ensure their safe and effective application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call