Abstract

Toxic effects of many persistent organic pollutants (e.g., polychlorinated biphenyls or polychlorinated dibenzo-p-dioxins and furans) are mediated via the aryl hydrocarbon receptor (AhR). Although polycyclic aromatic hydrocarbons (PAHs) and their derivatives also activate AhR, their toxic effects remain to be fully elucidated. In the present study, we used the in vitro H4IIE-luc transactivation cell assay to investigate cytotoxicity and potencies to activate AhR by 29 individual PAHs and their N-heterocyclic derivatives (aza-PAHs). The aza-PAHs were found to be significantly more cytotoxic and more potent inducers of AhR than their unsubstituted analogues. Several aza-PAHs, such as dibenz[a,h]acridine or dibenz[a,i]acridine, activated AhR within picomolar concentrations, comparable to the effects of reference 2,3,7,8-tetrachlorodibenzo-p-dioxin. Ellipsoidal volume, molar refractivity, and molecular size were the most important descriptors derived from the modeling of quantitative structure-activity relationships for potencies to activate AhR. Comparable relative toxic potencies (induction equivalency factors) for individual aza-PAHs are derived, and their use for evaluation of complex contaminated samples is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.