Abstract

Recently, the environmental residues of polybrominated diphenyl ethers (PBDEs) have markedly increased. In particular, the levels of certain PBDE congeners in fish have raised concern regarding potential risks associated with dietary PBDEs exposures. However, little is known regarding PBDE-mediated cell injury in relevant in vitro fish cell models. In this study, the cytotoxic effects of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) and decabrominated diphenyl ether (BDE-209) on RTG-2 cells were investigated. RTG-2 cells were incubated with different concentrations of BDE-47 and BDE-209 (1–100μM) for 72h, and a set of bioassays were conducted to measure: cell viability (evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and neutral red (NR) uptake), lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) formation and cell apoptosis. The results showed that BDE-47 and BDE-209 inhibited the cells viability, increased LDH leakage, and induced cell apoptosis in time and concentration-dependent manner. All significant effects were observed at concentrations of 12.5μM and above for BDE-47 and 25μM and above for BDE-209 (P<0.05). At the concentration of 100μM BDE-47 and BDE-209, the cell viability of the exposed cells dropped to about 40% and 50% of the control, and the apoptotic rates were 52.6% and 34.6%, respectively. After 12h exposure, a concentration-dependent increases of BDE-47 and BDE-209 (12.5–100μM) in ROS formation were observed. Collectively, the results of cell viability, LDH leakage, cell apoptosis and ROS formation demonstrated that the toxic mechanism of PBDEs on RTG-2 might be mediated by oxidative stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call