Abstract

BackgroundMicrobial polysaccharides have been reported to possess remarkable bioactivities. Physarum polycephalum is a species of slime mold for which the microplasmodia are capable of rapid growth and can produce a significant amount of cell wall-less biomass. There has been a limited understanding of the polysaccharides produced by microplasmodia of slime molds, including P. polycephalum. Thus, the primary objectives of this research were first to chemically characterize the exopolysaccharides (EPS) and intracellular polysaccharides (IPS) of P. polycephalum microplasmodia and then to evaluate their cytotoxicity against several cancer cell lines.ResultsThe yields of the crude EPS (4.43 ± 0.44 g/l) and partially purified (deproteinated) EPS (2.95 ± 0.85 g/l) were comparable (p > 0.05) with the respective crude IPS (3.46 ± 0.36 g/l) and partially purified IPS (2.45 ± 0.36 g/l). The average molecular weight of the EPS and IPS were 14,762 kDa and 1788 kDa. The major monomer of the EPS was galactose (80.22%), while that of the IPS was glucose (84.46%). Both crude and purified IPS samples showed significantly higher cytotoxicity toward Hela cells, especially the purified sample and none of the IPSs inhibited normal cells. Only 38.42 ± 2.84% Hela cells remained viable when treated with the partially purified IPS (1 mg/ml). However, although only 34.76 ± 6.58% MCF-7 cells were viable when exposed to the crude IPS, but the partially purified IPS displayed non-toxicity to MCF-7 cells. This suggested that the cytotoxicity toward MCF-7 would come from some component associated with the crude IPS sample (e.g. proteins, peptides or ion metals) and the purification process would have either completely removed or reduced amount of that component. Cell cycle analysis by flow cytometry suggested that the mechanism of the toxicity of the crude IPS toward MCF-7 and the partially purified IPS toward Hela cells was due to apoptosis.ConclusionsThe EPS and IPS of P. polycephalum microplasmodia had different chemical properties including carbohydrate, protein and total sulfate group contents, monosaccharide composition and molecular weights, which led to different cytotoxicity activities. The crude and partially purified IPSs would be potential materials for further study relating to cancer treatment.

Highlights

  • Microbial polysaccharides have been reported to possess remarkable bioactivities

  • These are (a) cytosolic or intracellular polysaccharides (IPSs) which are inside cells and serve as carbon and energy sources for the cells; (b) structural polysaccharides that make up the cell walls, including peptidoglycans, techoid acids, and lipopolysaccharides; and (c) exopolysaccharides (EPSs) that are excreted to the extracellular environment in the form of capsules or slime [2]

  • These figures were calculated based on their contents in one gram of the dried biomass, and the total dried biomass obtained from one liter of the culture medium*

Read more

Summary

Introduction

Microbial polysaccharides have been reported to possess remarkable bioactivities. Physarum polycephalum is a species of slime mold for which the microplasmodia are capable of rapid growth and can produce a significant amount of cell wall-less biomass. Polysaccharides possess various physicochemical properties, including gelation [1] as well as film-forming capability, viscosity and stability [3] These properties depend upon their composition and molecular architecture [4]. Recent studies have suggested that polysaccharides that possess high anticancer activities share some common physical-chemical properties, including having a relatively high molecular weight, expanded chains, a specific conformation, and a complicated monosaccharide composition. The latter characteristics cause them to have more opportunities to collide and bind with the receptors on the surface of tumor cells [11, 12]. Numerous studies on polysaccharides from microorganisms—including bacteria, fungi, and microalgae—have been carried out [1, 11, 13]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call