Abstract

The advancement of nanomedicine drugs as an outcome of nanotechnology offers tremendous potential to enhance cancer-fighting tactics. Scientists have begun studying the role of NPs in immunotherapy, an area that is particularly beneficial in treating malignancies. Conventional treatment of cancer uses medications known as chemotherapy that frequently cause adverse effects on healthy tissues. Zinc is a vital micronutrient for the well-being of humans; therefore, nanomaterials such as zinc oxide nanoparticles (ZnO NPs) are progressively appealing as cutting-edge medical agents with implementations like anticancer properties. A bottom-up approach was utilized to chemically produce the ZnO NPs, which were characterized using Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-ray analysis (EDX). MTT assays have been carried out to study the cell viability percentage against multiple ZnO NPs concentrations and durations. The white ZnO NPs displayed a diverse morphology within the nanoscale range, featuring rod and spherical shapes. This synthesis was confirmed through EDX, which revealed distinct peaks corresponding to zinc and oxygen, affirming the formation of pure ZnO NPs. MTT assay data showed that ZnO NPs had a dose and time-dependent cytotoxicity against HeLa cells. This observation suggests that the ZnO NPs possess the potential to combat cancer and may hold promise for applications in biomedical research, particularly in the development of anticancer drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call