Abstract

A phytochemical study of the root and bark of Brucea antidysenterica J. F. Mill. (Simaroubaceae) afforded three new compounds, including a stilbene glycoside bruceanoside A (1), and two canthinone alkaloids bruceacanthinones A (3) and B (4), along with ten known secondary metabolites, rhaponticin (2), 1,11-dimethoxycanthin-6-one (5), canthin-6-one (6), 1-methoxycanthin-6-one (7), 2-methoxycanthin-6-one (8), 2-hydroxy-1,11-dimethoxycanthin-6-one (9), β-carboline-1-propionic acid (10), cleomiscosin C (11), cleomiscosin A (12), and hydnocarpin (13). The structures of all the compounds were determined using spectrometric and spectroscopic methods including 1D and 2D NMR, and HRSEIMS. The identities of the known compounds were further confirmed by comparison of their data with those reported in the literature. The root and bark methanolic extracts, the dichloromethane and ethyl acetate soluble fractions, and the isolated compounds (3–13), were assessed for their cytotoxicity against the cancer cell lines A-549, MCF-7, and PC-3. The results suggested that compounds in the extracts might possess a synergic action in their cytotoxicity.

Highlights

  • Plants from the Brucea genus (Simaroubaceae) have been extensively investigated for their chemical constituents and pharmacological properties since 1900 [1]

  • A small amount of each extract was stored for their in vitro-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity/viability assay on A-549, MCF-7, and PC-3 cell lines

  • Thin-Layer Chromatography (TLC) profiles both bark and root extracts were combined and partitioned with dichloromethane and ethyl acetate to afford two major fractions. Subsequent purification of these fractions led to the isolation of three new compounds, including one new stilbene glycoside (1) and two new canthinone alkaloids (3 and 4)

Read more

Summary

Introduction

Plants from the Brucea genus (Simaroubaceae) have been extensively investigated for their chemical constituents and pharmacological properties since 1900 [1]. Among the numerous metabolites reported so far, quassinoids, called nigakilactones and canthinone alkaloids, are the most important class of compounds [1], with demonstrable biological activities, including anti-amoebic [2], antitumour [3,4,5], antiplasmodial [6,7], and antituberculosis [8] effects. In Ethiopia, the plant is used for the treatment of tumors, and a follow-up investigation revealed that the compound has promising activity in vitro against several lymphoma, leukemia, and myeloma cell lines [11].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.