Abstract

The mechanisms whereby immune cells infiltrating the CNS in multiple sclerosis patients contribute to tissue injury remain to be defined. CD4 T cells are key players of this inflammatory response. Myelin-specific CD4 T cells expressing CD56, a surrogate marker of NK cells, were shown to be cytotoxic to human oligodendrocytes. Our aim was to identify NK-associated molecules expressed by human CD4 T cells that confer this oligodendrocyte-directed cytotoxicity. We observed that myelin-reactive CD4 T cell lines, as well as short-term PHA-activated CD4 T cells, can express NKG2C, the activating receptor interacting with HLA-E, a nonclassical MHC class I molecule. These cells coexpress CD56 and NKG2D, have elevated levels of cytotoxic molecules FasL, granzyme B, and perforin compared with their NKG2C-negative counterparts, and mediate significant in vitro cytotoxicity toward human oligodendrocytes, which upregulated HLA-E upon inflammatory cytokine treatment. A significantly elevated proportion of ex vivo peripheral blood CD4 T cells, but not CD8 T cells or NK cells, from multiple sclerosis patients express NKG2C compared with controls. In addition, immunohistochemical analyses showed that multiple sclerosis brain tissues display HLA-E(+) oligodendrocytes and NKG2C(+) CD4 T cells. Our results implicate a novel mechanism through which infiltrating CD4 T cells contribute to tissue injury in multiple sclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.