Abstract
Hepatocellular carcinoma incidence rates have increased worldwide, which encouraged the development of new chemotherapeutic drugs. l-Amino acid oxidases from snake venoms are cytotoxic towards human tumor cells in in vitro monoculture systems, which do not simulate the tumor microenvironment. We examined the antitumor potential of BjussuLAAO-II, an l-amino acid oxidase from Bothrops jararacussu venom, in hepatocarcinoma cells (HepG2) in monoculture and co-culture with human umbilical vein endothelial cells (HUVEC) in vitro. All the concentrations tested (0.25–5.00 μg/mL) were cytotoxic (MTT and clonogenic survival assays) towards HepG2 and HUVEC cells in monoculture, and increased oxidative stress by 2′,7′-dichlorofluorescin diacetate fluorescence assay. Only 1.00 and 5.00 μg/mL exerted these effects in HepG2 cells co-cultured with HUVEC cells, and were genotoxic (comet assay) to HUVEC cells in monoculture. BjussuLAAO-II at 5.00 μg/mL induced DNA, but not chromosomal damage (micronucleus assay) in HepG2 cells in mono- and co-culture. The cytotoxicity and genotoxicity was more pronounced in monoculture, indicating that the tumor microenvironment influences the cellular response. BjussuLAAO-II caused cell death and DNA damage in HepG2 cells in vitro by inducing oxidative stress. Therefore, BjussuLAAO-II is a promising molecule for the development of new antitumor drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.