Abstract

Nanostructured ZnO films have potential use as coatings on medical devices and food packaging due to their antimicrobial and UV-protection properties. However, their influence on mammalian cells during clinical use is not fully understood. This study investigated the potential cytotoxicity of ZnO thin films in RAW 264.7 macrophages. ZnO thin films (∼96nm thick with a 50nm grain) were deposited onto silicon wafers using pulsed laser deposition. Cells grown directly on ZnO thin film coatings exhibited less toxicity than cells exposed to extracts of the coatings. Cells on ZnO thin films exhibited a 43% and 68% decrease in cell viability using the MTT and 7-AAD/Annexin V flow cytometry assays, respectively, after a 24-h exposure as compared to controls. Undiluted 100% 24- and 48-h extracts decreased viability by 89%, increased cell death by LDH release to 76% 24h after treatment, and increased ROS after 5–24h of exposure. In contrast, no cytotoxicity or ROS were observed for 25% and 50% extracts, indicating a tolerable concentration. Roughly 24 and 34μg/m2 Zn leached off the surfaces after 24 and 48h of incubation, respectively. ZnO coatings may produce gradual ion release which becomes toxic after a certain level and should be evaluated using both direct exposure and extraction methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.