Abstract

Rhamnolipids produced by P. aeruginosa MR01 were fractionated into mono- and di-rhamnolipids, and their dominant congeners, Rha-C10-C10 and Rha-Rha-C10-C10, were shown by mass spectrometry. Minimum surface tensions and critical micelle concentrations (CMC) were determined as "≃34 mN/m; ≃26.17 mg/l;" and "≃29 mN/m; ≃29.63 mg/l" for mono- and di-rhamnolipids, respectively. Spectrophotometry measurements provided a close approximation of CMC. Contact angle and diameter of wet area were determined for rhamnolipid-containing drops on hydrophobic paper to display their capability for alteration of surface wettability. Wet area measurement is a simple, reliable method not requiring a Drop Shape Analyzer. Cell viabilities determined by MTT assay showed a decline in a dose-dependent manner and estimated IC50 values were 25.87 μg/ml and 31.00 μg/ml for mono- and di-rhamnolipids treating MCF-7 cells for 48 h. Morphological observations using the inverted phase-contrast microscopy and fluorescence microscopy via Hoechst staining revealed the apoptotic characteristics in treated MCF-7 cells. The semi-quantitative RT-PCR method demonstrated that expression of the p53 gene in mRNA levels significantly (P < 0.05) increased when treated with 30 μg/ml of each rhamnolipid compound for 12 h. It can be concluded that rhamnolipids derived from MR01 show significant anticancer potential against MCF-7 cell line and should be further investigated as natural, therapeutic anti-tumor agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call