Abstract

Aflatoxins are mycotoxins produced by Aspergillus spp. Although AFB1 is implicated as a carcinogen in hepatocellular carcinoma, brain autopsies in affected areas have revealed its presence in 81% of cases. Given its haematogenous spread, here we determined the cytotoxic effects of AFB1 on primary human brain microvascular endothelial cells (HBMEC), which constitute the blood-brain barrier, human umbilical vein endothelial cells (HUVEC) as well as immortalized epithelial cells of human hepatocellular carcinoma (Huh7). The cell types were exposed to AFB1 (3-32 nM) for 24 h and release of lactate dehydrogenase was measured as cell cytotoxicity marker. Furthermore, DNA was collected from both cell types and DNA adduct formation was determined by immunoblot using anti-AFB1-DNA adduct antibody. At 32 nM, AFB1 killed >85% HBMEC, while controls showed minimal effects (P < .05). Similar concentrations of AFB1 showed 22% cell death of HUVEC, while the same concentration did not kill Huh7. At low concentrations, in other words, 3.2 nM, AFB1 produced DNA adduct formation in HBMEC, while high concentration (32 nM) did not form DNA adducts. For HUVEC, 16 nM and 32 nM exhibited DNA adduct formation. For Huh7, 3.2 nM did not form DNA adducts, while 32 nM exhibited DNA adduct formation. For the first time, we report that AFB1 affected the viability of primary endothelial cells but not immortalized Huh7 cells. Cytotoxicity of brain endothelial cells suggests extra-hepatic complications post-AFB1 exposure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.