Abstract

Metal complexes of thiosemicarbazones have been receiving considerable attention in biological applications such as antimicrobial and anticancer therapies. In this work, Co(II), Zn(II) and Mn(II) complexes of 2-hydroxy-5-methoxyacetophenone thiosemicarbazone (HMAT) were synthesized for the first time and characterized by EPR, FT-IR, NMR, UV–Vis spectroscopies, TG/DSC and elemental analysis. X-ray powder diffraction analysis was carried out for Zn(II) complex. HMAT and its Cu(II), Co(II), Zn(II) and Mn(II) complexes were tested as enzyme inhibitory agents. All compounds are effective inhibitor of cytosolic carbonic anhydrase I and II isoforms (hCA I and II) enzymes. IC50 values of HMAT and its Cu(II), Co(II), Zn(II) and Mn(II) complexes were determined as 93.35, 324.46, 25.67, 1.06 and 22.36 μM for CA I isozyme and 99.02, 86.64, 57.76, 10.34 and 36.48 μM for CA II isozyme, respectively. The evaluation of potential cytotoxic effects of the compounds was performed against normal epithelial breast mammary gland CRL-4010, estrogen-positive low metastatic MCF-7 and triple negative highly metastatic MDA-MB-231 breast adenocarcinoma cell lines by MTT assay. The results showed that the tested metal complexes have high cytotoxic effects than their ligand molecule. In particular, the Cu(II) complex displayed preciously high cytotoxic properties different from the others. Given these facts, the Cu(II) complex could be debated as potential chemotherapeutic molecule against drug-resistant breast cancer cells. Minimum inhibitory concentrations of the compounds against the test organisms were also detected for the microbiological analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call