Abstract
Cardiac glycosides, such as digoxin and digitoxin, are compounds that interact with Na+ /K+ -ATPase to induce anti-neoplastic effects; however, these cardiac glycosides have narrow therapeutic index. Thus, semi-synthetic analogs of digitoxin with modifications in the sugar moiety has been shown to be an interesting approach to obtain more selective and more effective analogs than the parent natural product. Therefore, the aim of this study was to assess the cytotoxic potential of novel digitoxigenin derivatives, digitoxigenin-α-L-rhamno-pyranoside (1) and digitoxigenin-α-L-amiceto-pyranoside (2), in cervical carcinoma cells (HeLa) and human diploid lung fibroblasts (Wi-26-VA4). In addition, we studied the anticancer mechanisms of action of these compounds by comparing its cytotoxic effects with the potential to modulate the activity of three P-type ATPases; Na+ /K+ -ATPase, sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA), and plasma membrane Ca2+ -ATPase (PMCA). Briefly, the results showed that compounds 1 and 2 were more cytotoxic and selectivity for HeLa tumor cells than the nontumor cells Wi-26-VA4. While the anticancer cytotoxicity in HeLa cells involves the modulation of Na+ /K+ -ATPase, PMCA and SERCA, the modulation of these P-type ATPases was completely absent in Wi-26-VA4 cells, which suggest the importance of their role in the cytotoxic effect of compounds 1 and 2 in HeLa cells. Furthermore, the compound 2 inhibited directly erythrocyte ghosts PMCA and both compounds were more cytotoxic than digitoxin in HeLa cells. These results provide a better understanding of the mode of action of the synthetic cardiac glycosides and highlights 1 and 2 as potential anticancer agents.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.