Abstract
In this study biopolymer-inorganic material of chitosan‑copper oxide-neem seed (CS-CuO-NS) biocomposite was successfully synthesized by simple precipitation method and characterized by FT-IR, XRD, HR-SEM, TEM and TGA analyses. From HR-SEM and TEM analysis, CS-CuO-NS biocomposite shows flower and needle like structure respectively. The size of the as prepared CS-CuO-NS biocomposite is found to be 20–100 nm. All the synthesized materials were tested for antibacterial activity against both gram positive like Staphylococcus aureus (S. aureus) and Streptococcus pyogenes (S. pyogenes) and gram negative like Escherichia coli (E. coli) and Klebsiella aerogenes (K. aerogenes) bacterial strains. The maximum zone of inhibition is obtained for CS-CuO-NS biocomposite against S. aureus (23 mm), S. pyogenes (21 mm), E. coli (22 mm) and K. aerogenes (20 mm). The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) were determined. The antioxidant activity was determined by free radicals scavenging such as 1, 1-Diphenyl-2-picryhydrazyl (DPPH) and 2, 2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). Furthermore, the cytotoxicity effect was investigated against human breast cancer (MCF-7) cell line and the highest cytotoxicity (IC50:16.33 μg/mL) is found to be in biocomposite. From the results of antibacterial, antioxidant and cytotoxic activities, it is concluded that CS-CuO-NS biocomposite may be suitable for biomedical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.