Abstract

In order to further reveal the chemistry and biochemistry of chromium(III) complexes, the present work illuminates the formation of chromium(III) complexes with aroylhydrazine ligands with their physical, chemical and spectral studies. Another significant contribution of this study is the evaluation of the cytotoxic activity, antiglycation property and carbonic anhydrase inhibition study of synthesized chromium(III)-aroylhydrazine complexes. Synthesis and structural investigation of aroylhydrazine ligands (1-7) and their chromium(III) complexes (1a-7a) were carried out by using elemental analysis (C, H, N), physical (conductivity measurements) and spectral (EI-Mass, ESI-Mass, FTIR and UV-Visible) methods. These physical, analytical and spectral data supports that all chromium(III)-aroylhydrazine complexes exhibit an octahedral geometry in which ligand exhibits as a bidentate coordination and two water molecules coordinated at equatorial positions with general formula [Cr(L)2(H2O)2]Cl3. Cytotoxic investigations shows that synthesized chromium(III)-aroylhydrazine complexes were not found to be toxic against normal cells so these compounds were further studied for other biological activities. Moreover, aroylhydrazine ligands and their chromium(III) complexes were examined for their antiglycation activity in which ligands were found inactive whereas chromium(III)-aroylhydrazine complexes showed significant inhibition of the process of protein glycation. Similarly, in carbonic anhydrase inhibition studies all aroylhydrazine ligands were observed inactive while some of chromium(III)-aroylhydrazine complexes showed potential in carbonic anhydrase inhibition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.