Abstract
The organic hydroperoxide, tert-butyl hydroperoxide (t-BHP), is a useful model compound to study mechanisms of oxidative cell injury. In the present work, we examined the features of the interactions of this oxidant with Chinese hamster B14 cells. The aim of our study was to reveal a possible role of structural modifications in membranes and loss of DNA integrity in t-BHP-induced cell injury and death. The tert-butyl hydroperoxide treatment (100–1000μM, 37°C for 1h) did not decrease cell viability (as measured by cell-specific functional activity with an MTT test), but completely prevented cell growth. We observed intracellular reduced glutathione (GSH) oxidation and total glutathione (GSH+GSSG) depletion, a slight increase in the level of lipid-peroxidation products, an enhancement of membrane fluidity, intracellular potassium leakage and a significant decrease of membrane potential. At oxidant concentrations of 100–1500μM, a significant damage to DNA integrity was observed as revealed by the Comet assay. The inhibition of cell proliferation (cell-growth arrest) may be explained by genotoxicity of t-BHP, by disturbance of the cellular redox-equilibrium (GSH oxidation) and by structural membrane modifications, which result in ion-non-selective pore formation. The disturbance in passive membrane permeability and the DNA damage may be the most dramatic cell impairments induced by t-BHP treatment. The presence of another oxidant, hypochlorous acid (HOCl), completely prevented t-BHP-induced DNA strand breaks, perhaps due to extracellular oxidation of t-BHP by HOCl.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research - Genetic Toxicology and Environmental Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.