Abstract

Objectives: Acute myeloid leukemia (AML) is a highly aggressive heterogeneous hematopoietic malignancy characterized by a rapid and abnormal proliferation of immature myeloid leukemia cells in the bone marrow and peripheral blood. Aberrant alterations in signal transduction pathways are strongly associated with the progression of AML. This study aimed to investigate cell viability and the cell cycle in AML cells by targeting the Hedgehog and mTOR signaling pathways with rapamycin and GANT61. Materials and Method: The antiproliferative effect of rapamycin and GANT61 was assessed by the MTT cell viability assay in two AML cell lines: CMK and MOLM-13. The effect of the inhibitors on cell-cycle distribution was determined using propidium iodide staining and measured with flow cytometry. Results: Rapamycin, an mTOR inhibitor, and GANT61, a Gli-1 inhibitor, decreased the cell proliferation of CMK and MOLM-13 cells. The IC20 values, which is the drug concentration that inhibits cell growth by 20%, were combined and administered to the cells. The results show the drugs to have a combinatorial inhibitory effect on CMK cells but not on MOLM-13 cells. In addition, the combination of drugs arrested the cells during the G0/G1 phase. Conclusion: This study suggests a novel combination therapy approach for AML via mTOR and Hedgehog signaling pathway inhibition using rapamycin and GANT61, respectively. It also suggest further studies be performed to reveal the mechanism of action.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call