Abstract

Nano-biotechnology is recognized as offering revolutionary changes in the field of cancer therapy and biologically synthesized gold nanoparticles are known to have a wide range of medical applications. Gold nanoparticles (GNPs) were biosynthesized with an aqueous extract of the red alga Corallina officinalis, used as a reducing and stabilizing agent. GNPs were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive analysis (EDX) and Fourier transform infra-red (FT-IR) spectroscopy and tested for cytotoxic activity against human breast cancer (MCF-7) cells cultured in Dulbecco's modified Eagle medium supplemented with 10% fetal bovine serum, considering their cytotoxicty and effects on cellular DNA. The biosynthesized GNPs were 14.6 ± 1 nm in diameter. FT-IR analysis showed that the hydroxyl functional group from polyphenols and carbonyl group from proteins could assist in formation and stabilization. The GNPs showed potent cytotoxic activity against MCF-7 cells, causing necrosis at high concentrations while lower concentrations were without effect as indicated by DNA fragmentation assay. The antitumor activity of the biosynthesized GNPs from the red alga Corallina officinalis against human breast cancer cells may be due to the cytotoxic effects of the gold nanoparticles and the polyphenolcontent of the algal extract.

Highlights

  • Breast cancer is the most common and the second leading cause of cancer death among women

  • Nano-biotechnology is recognized as offering revolutionary changes in the field of cancer therapy and biologically synthesized gold nanoparticles are known to have a wide range of medical applications

  • Biosynthesis of gold nanoparticles (GNPs) Reduction of 1 mM gold chloride into gold nanoparticles (GNPs) during exposure to the aqueous extract of Corallina officinalis turned the colour to red (Figure 1), was observed by visual observation confirming the reduction of gold ions to GNPs

Read more

Summary

Introduction

Breast cancer is the most common and the second leading cause of cancer death among women. Materials and Methods: Gold nanoparticles (GNPs) were biosynthesized with an aqueous extract of the red alga Corallina officinalis, used as a reducing and stabilizing agent. GNPs were characterized using UV-Vis spectroscopy, transmission electron microscopy (TEM), energy dispersive analysis (EDX) and Fourier transform infra-red (FT-IR) spectroscopy and tested for cytotoxic activity against human breast cancer (MCF-7) cells cultured in Dulbecco’s modified Eagle medium supplemented with 10% fetal bovine serum, considering their cytotoxicty and effects on cellular DNA. Conclusions: The antitumor activity of the biosynthesized GNPs from the red alga Corallina officinalis against human breast cancer cells may be due to the cytotoxic effects of the gold nanoparticles and the polyphenolcontent of the algal extract

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call