Abstract

We previously showed that phorbol esters are cytotoxic to human thyroid epithelial cells expressing a mutant RAS oncogene. Here we explore the generality of this finding using cells derived from pancreatic cancer, which, like thyroid, shows a high frequency of RAS mutation, but is a much greater cause of cancer mortality. The response to phorbol myristate acetate (PMA) and related agents was assessed on a panel of 9 pancreatic cancer cell lines, using a range of assays for cell growth and death in vitro and in vivo. In most lines, PMA induced non-apoptotic cell death which was, surprisingly, independent of its "classic" target, protein kinase C. With 24 hr exposure, the IC(50) in the most sensitive line (Aspc-1) was <1 ng/ml (1.6 nM), with survival undetectable at concentrations >/=>/=16 nM, and after only 1 hr exposure the IC(50) was still </=</=16 nM. Interestingly, the efficacy of a second phorbol ester, phorbol dibutyrate, was much lower, and the PMA analogue bryostatin-1, which is in clinical trials against other tumour types, was totally inactive. Pre-treatment of Aspc-1 cells with PMA before subcutaneous inoculation into nude mice prevented, or greatly retarded, subsequent xenograft tumour growth. Furthermore, treatment of established tumours with a single peri-tumoral injection of PMA induced extensive cell death and arrested tumour development. Taken together with recent Phase 1 clinical studies, these data suggest that activity against pancreatic cancer will be attainable by systemic administration of PMA, and point to potential novel therapeutic targets for this highly aggressive cancer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call