Abstract

Reduced intracellular drug accumulation due to the activity of the drug efflux pump ABC (B1) is a major mechanism in the resistance of cancer cells to chemotherapy. ABC (B1) is a poly specific transporter, and the molecular mechanism of its complex translocation process remains to be elucidated. To understand the process will require information on the regions involved in drug binding and those that couple this event to nucleotide hydrolysis. The present investigation focuses on the cytosolic region of transmembrane helix 6 (TM6), which has been widely attributed with a central role in the translocation process. A series of ABC (B1) isoforms containing a unique cysteine within TM6 was constructed and the resultant proteins purified and reconstituted. Accessibility of the cysteines to covalent modification by maleimide reagents was measured for the basal, ATP bound and vanadate trapped conformations of each isoform. Residues at the two extremes of the TM6 region examined (amino acids 344 to 360) were considerably more accessible than the central segment, the latter of which also failed to undergo significant conformational changes during the catalytic cycle. Covalent modification of the cytosolic segment of TM6 did, however, attenuate drug stimulation of ATP hydrolysis and demonstrates an important role for this segment in coupling drug binding to ATP hydrolysis during translocation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.