Abstract

Absorptive epithelial cells must admit large quantities of salt (NaCl) during the transport process. How these cells avoid swelling to protect functional integrity in the face of massive salt influx is a fundamental, unresolved problem. A special preparation of the human sweat duct provides critical insights into this crucial issue. We now show that negative feedback control of apical salt influx by regulating the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel activity is key to this protection. As part of this control process, we report a new physiological role of K(+) in intracellular signaling and provide the first direct evidence of acute in vivo regulation of CFTR dephosphorylation activity. We show that cytosolic K(+) concentration ([K(+)](c)) declines as a function of increasing cellular NaCl content at the onset of absorptive activity. Declining [K(+)](c) cause parallel deactivation of CFTR by dephosphorylation, thereby limiting apical influx of Cl(-) (and its co-ion Na(+)) until [K(+)](c) is stabilized. We surmise that [K(+)](c) stabilizes when Na(+) influx decreases to a level equal to its efflux through the basolateral Na(+)-K(+) pump thereby preventing disruptive changes in cell volume.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.