Abstract
In plants, UDP-glucose is the direct precursor for cellulose biosynthesis, and can be converted into other NDP-sugars required for the biosynthesis of wall matrix polysaccharides. UDP-glucose is generated from sucrose by two distinct metabolic pathways. The first pathway is the direct conversion of sucrose to UDP-glucose and fructose by sucrose synthase. The second pathway involves sucrose hydrolysis by cytosolic invertase (CINV), conversion of glucose to glucose-6-phosphate and glucose-1-phosphate, and UDP-glucose generation by UDP-glucose pyrophosphorylase (UGP). Previously, Barratt etal. (Proc. Natl Acad. Sci. USA, 106, 2009 and 13124) have found that an Arabidopsis double mutant lacking CINV1 and CINV2 displayed drastically reduced growth. Whether this reduced growth is due to deficient cell wall production caused by limited UDP-glucose supply, pleiotropic effects, or both, remained unresolved. Here, we present results indicating that the CINV/UGP pathway contributes to anisotropic growth and cellulose biosynthesis in Arabidopsis. Biochemical and imaging data demonstrate that cinv1 cinv2 seedlings are deficient in UDP-glucose production, exhibit abnormal cellulose biosynthesis and microtubule properties, and have altered cellulose organization without substantial changes to matrix polysaccharide composition, suggesting that the CINV/UGP pathway is a key metabolic route to UDP-glucose synthesis in Arabidopsis. Furthermore, differential responses of cinv1 cinv2 seedlings to exogenous sugar supplementation support a function of CINVs in influencing carbon partitioning in Arabidopsis. From these data and those of previous studies, we conclude that CINVs serve central roles in cellulose biosynthesis and carbon allocation in Arabidopsis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.