Abstract

Single molecule techniques are particularly well suited for investigating the processes of protein folding and chaperone assistance. However, current assays provide only a limited perspective on the various ways in which the cellular environment can influence the folding pathway of a protein. In this study, a single molecule mechanical interrogation assay is developed and used to monitor protein unfolding and refolding within a cytosolic solution. This allows to test the cumulative topological effect of the cytoplasmic interactome on the folding process. The results reveal a stabilization against forced unfolding for partial folds, which are attributed to the protective effect of the cytoplasmic environment against unfolding and aggregation. This research opens the possibility of conducting single molecule molecular folding experiments in quasi-biological environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.