Abstract

Calmodulin (CaM), the major intracellular receptor for calcium, is involved in regulation of diverse cellular functions. Positively charged amphipathic helical segments have been identified as an important structural motif in the recognition of CaM by different CaM-activated enzymes and peptides. The carboxyl-terminal domain of the envelope glycoproteins of human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV) contain regions that can fold into amphipathic helical segments, which closely resemble the amphipathic segments found in CaM-activated enzymes. We show here that synthetic peptide analogs corresponding to the two putative amphipathic helical regions of HIV-1/WMJ gp160 bind to CaM with high affinity (Kd 31-41 nM) in the presence of calcium. They also bind CaM in the absence of calcium, although with much lower affinity. The peptides inhibit CaM-regulated activation of bovine brain phosphodiesterase in vitro. The peptides also inhibit mitogen-induced lymphocyte activation, a property shared by CaM antagonists. Purified HIV-1 gp160 binds to CaM, while gp120, which lacks the putative amphipathic helical segments, does not bind CaM. In HIV-infected cells, the putative CaM-binding regions of gp160 are located intracellularly and may therefore interact with the cytosolic CaM. We postulate that CaM binding by HIV envelope proteins is likely to exert diverse modulatory effects, and the mechanism for HIV-induced cytotoxicity may involve, in part, inhibition of CaM-regulated cellular functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.