Abstract

A wide range of diseases are associated with the accumulation of cytosolic protein aggregates. The effects of these aggregates on various aspects of normal cellular protein homeostasis remain to be determined. Here we find that cytosolic aggregates, without necessarily disrupting proteasome function, can markedly delay the normally rapid degradation of nontranslocated secretory and membrane protein precursors. In the case of mammalian prion protein (PrP), the nontranslocated fraction is recruited into preexisting aggregates before its triage for degradation. This recruitment permits the growth and persistence of cytosolic PrP aggregates, explaining their apparent "self-conversion" seen in earlier studies of transient proteasome inhibition. For other proteins, the aggregate-mediated delay in precursor degradation led to aggregation and/or soluble residence in the cytosol, often causing aberrant cellular morphology. Remarkably, improving signal sequence efficiency mitigated these effects of aggregates. These observations identify a previously unappreciated consequence of cytosolic aggregates for nontranslocated secretory and membrane proteins, a minor but potentially disruptive population the rapid disposal of which is critical to maintaining cellular homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.