Abstract

The ciliary base is marked by a transition zone in which Y-shaped cross-linkers extend from doublet microtubules to the plasma membrane. Our goal was to investigate the hypothesis that the cross-linkers form a stable interaction between membrane or cell surface components and the underlying microtubule cytoskeleton. We have combined Triton X-100 extraction with lectin cytochemistry in the photoreceptor sensory cilium to investigate the relationship between cell surface glycoconjugates and the underlying cytoskeleton, and to identify the cell surface components involved. Wheat germ agglutinin (WGA) binds heavily to the cell surface in the region of the Y-shaped cross-linkers of the neonatal rat photoreceptor cilium. WGA binding is not removed by prior digestion with neuraminidase and succinyl-WGA also binds the proximal cilium, suggesting a predominance of N-acetylglucosamine containing glycoconjugates. Extraction of the photoreceptor plasma membrane with Triton X-100 removes the lipid bilayer, leaving the Y-shaped crosslinkers associated with the axoneme. WGA-binding sites are found at the distal ends of the crosslinkers after Triton X-100 extraction, indicating that the microtubule-membrane cross-linkers retain both a transmembrane and a cell surface component after removal of the lipid bilayer. To identify glycoconjugate components of the cross-linkers we used a subcellular fraction enriched in axonemes from adult bovine retinas. Isolated, detergent-extracted bovine axonemes show WGA binding at the distal ends of the cross-linkers similar to that seen in the neonatal rat. Proteins of the axoneme fraction were separated by SDS-PAGE and electrophoretically transferred to nitrocellulose. WGA labeling of the nitrocellulose transblots reveals three glycoconjugates, all of molecular mass greater than 400 kD. The major WGA-binding glycoconjugate has an apparent molecular mass of approximately 600 kD and is insensitive to prior digestion with neuraminidase. This glycoconjugate may correspond to the dominant WGA-binding component seen in cytochemical experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.