Abstract
BackgroundDuring granulopoiesis in the bone marrow, the nucleus differentiates from ovoid to lobulated shape. Addition of retinoic acid (RA) to leukemic HL-60 cells induces development of lobulated nuclei, furnishing a convenient model system for nuclear differentiation during granulopoiesis. Previous studies from our laboratory have implicated nuclear envelope composition as playing important roles in nuclear shape changes. Specifically noted were: 1) a paucity of lamins A/C and B1 in the undifferentiated and RA treated cell forms; 2) an elevation of lamin B receptor (LBR) during induced granulopoiesis.ResultsThe present study demonstrates that perturbation of cytoskeletal elements influences nuclear differentiation of HL-60 cells. Because of cytotoxicity from prolonged exposure to cytoskeleton-modifying drugs, most studies were performed with a Bcl-2 overexpressing HL-60 subline. We have found that: 1) nocodazole prevents RA induction of lobulation; 2) taxol induces lobulation and micronuclear formation, even in the absence of RA; 3) cytochalasin D does not inhibit RA induced nuclear lobulation, and prolonged exposure induces nuclear shape changes in the absence of RA.ConclusionsThe present results, in the context of earlier data and models, suggest a mechanism for granulocytic nuclear lobulation. Our current hypothesis is that the nuclear shape change involves factors that increase the flexibility of the nuclear envelope (reduced lamin content), augment connections to the underlying heterochromatin (increased levels of LBR) and promote distortions imposed by the cytoskeleton (microtubule motors creating tension in the nuclear envelope).
Highlights
During granulopoiesis in the bone marrow, the nucleus differentiates from ovoid to lobulated shape
Employing HL-60-bcl-2 cells [18], we demonstrate that the integrity of the MTs system, but not the actin microfilament system, is essential for the nuclear lobulation process during in vitro granulopoiesis
HL-60/S4 cells exposed to 1 μM cytochalasin D (CD), with or without retinoic acid (RA), became mostly multinucleated by day 3
Summary
During granulopoiesis in the bone marrow, the nucleus differentiates from ovoid to lobulated shape. Addition of retinoic acid (RA) to leukemic HL-60 cells induces development of lobulated nuclei, furnishing a convenient model system for nuclear differentiation during granulopoiesis. Granulopoiesis, the differentiation of peripheral blood granulocytes, involves dramatic nuclear and cytoplasmic structural changes [1]. Committed bone marrow progenitor cells possess ovoid-shaped nuclei with prominent nucleoli and a paucity of heterochromatin. The mature terminally differentiated human neutrophil (polymorphonuclear granulocyte) exhibits a distinctly lobulated (segmented) nucleus with shrunken nucleoli and extensive peripheral heterochromatin. The mature neutrophil is released into the bloodstream, where it circulates as a round unpolarized cell. Responding to chemotactic agents produced by infection and tissue damage, the circulating neutrophil changes cell shape, converting to a rapidly migrating polarized cell. Mature granulocytes have a limited lifespan, succumbing to apoptosis within a few days following release into the bloodstream
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.