Abstract

AbstractMicrotubules and microfilaments have been imaged in living plant cells and their dynamic changes recorded during division, growth and development. Carboxyfluorescein labeled brain tubulin has been injected into cells that are maintained in an active state in a culture chamber on the microscope stage. Subsequent imaging with the confocal microscope reveals microtubules in the preprophase band, the mitotic apparatus, the phragmoplast, and the cortical array. The structural changes of these microtubules have been observed during transitional stages. In addition, their dynamic features are demonstrated by depolymerization in elevated calcium, low temperature, and in the drug oryzalin, and by repolymerization when returned to normal conditions. Examination of living Tradescantia stamen hair cells, which have been injected with fluorescent phalloidin to label the actin microfilaments, reveals hitherto undisclosed aspects of the preparation of the division site and dynamics of the phragmoplast cytoskeleton. During prophase microfilaments occur throughout the cell cortex, with those in the region of the preprophase band becoming transversely aligned. At nuclear envelope breakdown, these specifically disassemble, leaving a circumferential zone from which microfilaments remain absent throughout division. During cytokinesis microfilaments arise within the phragmoplast, oriented parallel to the microtubules, but excluded from the zone where the MTs overlap and where cell plate vesicles aggregate. The phragmoplast microfilaments, in a manner similar to microtubules, shorten in length, expand in girth, and eventually disassemble when the cell plate is complete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.