Abstract

Carbon-metal composites are promising multifunctional electrocatalysts, but it is still challenging to prepare carbon-metal composites with tunable structure and strong metal-carbon interactions. Here, we present a unique gas-foaming assembly strategy to prepare cytosine-Co chelate derived Co and N codoped carbon nanotube (Co-NCNT). The structure for Co-NCNTs could be easily controlled by regulating cytosine-Co coordination or the carbonization temperature. The optimal Co-NCNT possesses homogeneous distributed NCNTs (10 nm), CoOx (5 nm) and CoNx moieties to synergistically boost electrochemical processes, and offer mesoporous nanosheet architecture to guarantee fast mass migrate and electron transfer. As a result, Co-NCNT shows remarkable ORR performance (onset potential of 0.93 V in 0.1 M KOH electrolyte) along with significant OER and HER activity. More important, it was found that CoNx moieties are responsible for the remarkable electrocatalytic activity in Co-NCNTs, because CoNx could alter active center, enhance metal-carbon synergy, decrease interfacial resistance and reinforce the strength of composites. Therefore, this paper not just demonstrates an advanced multi-functional electrocatalyst, but could also give deep understanding on the designing of multifunctional electrocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.