Abstract

Activation of astrocytes occurs during many forms of CNS injury, but its importance for neuronal survival is poorly understood. When hippocampal cultures of neurons and astrocytes were treated from day 2–4 in vitro (DIV 2–4) with 1 μM cytosine arabinofuranoside (AraC), we observed a stellation of astrocytes, an increase in glial fibrillary acidic protein (GFAP) level as well as a higher susceptibility of the neurons to glutamate compared with cultures treated from DIV 2–4 with vehicle. To find out whether factors released into the culture medium were responsible for the observed differences in glutamate neurotoxicity, conditioned medium of AraC-treated cultures (MCMAraC) was added to vehicle-treated cultures and conditioned medium of vehicle-treated cultures (MCMvh) was added to AraC-treated cultures 2 h before and up to 18 h after the exposure to 1 mM glutamate for 1 h. MCMAraC increased glutamate neurotoxicity in vehicle-treated cultures and MCMvh reduced glutamate neurotoxicity in AraC-treated cultures. Heat-inactivation of MCMvh increased, whereas heat-inactivation of MCMAraC did not affect glutamate toxicity suggesting that heat-inactivation changed the proportion of factors in MCMvh inhibiting and exacerbating the excitotoxic injury. Similar findings were obtained using conditioned medium of pure astrocyte cultures of DIV 12 treated from DIV 2–4 with vehicle or 1 μM AraC suggesting that heat-sensitive factors in MCMvh were mainly derived from astrocytes. Treatment of hippocampal cultures with 1 mM dibutyryl-cAMP for 3 days induced an activation of the astrocytes similar to AraC and increased neuronal susceptibility to glutamate. Our findings provide evidence that activation of astrocytes impairs their ability to protect neurons after excitotoxic injury due to changes in the release of soluble and heat-sensitive factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.