Abstract
Methylglyoxal (MG) has been suggested to be a major source of intracellular reactive carbonyl compounds, and has been implicated in increasing the levels of advanced glycation end products in age-related diseases. Xanthohumol is a prenylated flavonoid found in hops (Humulus lupulus) and beer. In the present study, we investigated the effects of xanthohumol on MG-induced cytotoxicity in osteoblastic MC3T3-E1 cells. Xanthohumol attenuated MG-induced cytotoxicity, as evidenced by improved cell viability, and prevented MG-induced MG-protein adducts, inflammatory cytokines, reactive oxygen species and mitochondrial superoxide production. In addition, xanthohumol increased glyoxalase I activity, glutathione, heme oxygenase-1 and nuclear factor erythroid 2-related factor 2 levels in the presence of MG. Pretreatment with xanthohumol before MG exposure reduced MG-induced mitochondrial dysfunction. Furthermore, xanthohumol treatment resulted in a significant reduction in the levels of endoplasmic reticulum stress and autophagy induced by MG. Notably, the autophagy-reducing effect of xanthohumol was abolished after the addition of Ex527, a selective inhibitor of sirtuin 1, suggesting that xanthohumol is an effective sirtuin 1 activator for reducing autophagy. Taken together, our findings suggest xanthohumol as a promising new strategy for preventing diabetic osteopathy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.