Abstract

Cytoprotective effects of short-term treatment with grape seed extract (GSE) upon human gingival fibroblasts (hGFs) were evaluated in relation to its antioxidant properties and compared with those of a water-soluble analog of vitamin E: trolox (Tx). GSE and Tx showed comparable antioxidant potential in vitro against di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH; a stable radical), hydroxyl radical (•OH), singlet oxygen (1O2), and hydrogen peroxide (H2O2). Pretreatment or concomitant treatment with GSE for 1 min protected hGFs from oxidative stressors, including H2O2, acid-electrolyzed water (AEW), and 1O2, and attenuated the intracellular formation of reactive oxygen species induced by H2O2 and AEW. Tx also reduced the H2O2- and AEW-induced intracellular formation of reactive oxygen species, but showed no cytoprotective effects on hGFs exposed to H2O2, AEW, or 1O2. These results suggest that the cytoprotective effects of GSE are likely exerted independently of its antioxidant potential.

Highlights

  • Grape seed is one of the richest sources of proanthocyanidin [1,2], a polymer of flavan-3-ols with an average degree of polymerization between 2 and 17) [3,4]

  • We revealed that pretreatment of human gingival fibroblasts with grape seed extract (GSE) containing proanthocyanidin for 1 min elicited cytoprotective effects upon hGFs exposed to harsh environmental conditions; short-term exposure of hGFs in the mitotic phase to pure water or physiologic saline resulted in the low recovery of viable cells [21]

  • liquid chromatography/mass spectrometry (LC/MS) analyses confirmed that, as disclosed by the manufacturer (Indena), the GSE used in the present study comprised catechin monomers but oligomers such as proanthocyanidin

Read more

Summary

Introduction

Grape seed is one of the richest sources of proanthocyanidin [1,2], a polymer of flavan-3-ols with an average degree of polymerization between 2 and 17) [3,4]. Grape seed extract GSE) is noteworthy for its anti-oxidative activity including scavenging free radicals [5,6]. Periodontal diseases (gingivitis and periodontitis) are chronic inflammatory diseases, which are generally caused by gram-negative bacteria, and feature gingival inflammation. Lipopolysaccharide is a cell wall component of gram-negative bacteria, which inhabit in almost all the subgingival tissues, and acts as pathogenic and exacerbating factors for periodontal diseases through inflammatory response [15,16,17]. One of the main targets of LPS is human gingival fibroblasts (hGFs) that play a pivotal role in inducing periodontal tissues injury through cytokine production such as IL-6 and IL-8 [18,19,20]

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.