Abstract

Centella asiatica (CA) is commonly used as a leafy vegetable in many Asian countries. Consumption of CA is believed to prevent neuronal damage and improve brain function. The protective effect of CA on N2a cells were evaluated using ischaemia-reperfusion (IR) injury and oxygen-glucose deprivation (OGD) models in order to shed light on its molecular mechanism of action. Aqueous-methanolic extract of the CA leaves protected N2a cells against IR injury. CA reduced the levels of intracellular reactive oxygen species (ROS). It also prevented the elevation of intracellular calcium and attenuated the change of mitochondrial membrane potential, caused by OGD. When VDAC-1 was knocked down in N2a cells, CA failed to protect cells against IR injury. Further, CA modulated the properties of human VDAC-1 (hVDAC-1). hVDAC-1, when reconstituted in the lipid bilayer membrane, showed higher conductance after treating with CA. CA stabilized hVDAC-1 in open state, which is possibly associated with its cytoprotective effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.