Abstract

The dynamics of water in human red blood cells was measured with quasielastic incoherent neutron scattering in the temperature range between 290 and 320 K. Neutron spectrometers with time resolutions of 40, 13, and 7 ps were combined to cover time scales of bulk water dynamics to reduced mobility interfacial water motions. A major fraction of approximately 90% of cell water is characterized by a translational diffusion coefficient similar to bulk water. A minor fraction of approximately 10% of cellular water exhibits reduced dynamics. This slow water fraction was attributed to dynamically bound water on the surface of hemoglobin which accounts for approximately half of the hydration layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.