Abstract

We examine the relationship between cytoplasmic vitrification and survival of anhydrobiotic organisms under extreme desiccation condition. The ability of anhydrobiotic organisms to survive desiccation is associated with the accumulation of carbohydrates. Spores, yeasts and microscopic animals accumulate trehalose, whereas pollen, plant seeds and resurrection plants contain sucrose and oligosaccharides such as raffinose and stachyose. During dehydration, these carbohydrates and other components help the organisms enter into the vitreous state (cytoplasmic vitrification). The immobilization by vitrification may minimize stress damages on the cellular structures and protect their biological capabilities during dehydration and rehydration; however, cytoplasmic vitrification alone is found to be insufficient for anhydrobiotic organisms to survive extreme dehydration. The survival of dry organisms in the desiccated state requires the maintenance of the vitreous state. When the vitreous state is lost, free radical oxidation, phase separation and cytoplasmic crystallization would occur and impose real threat to the survival of dry organisms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.