Abstract

We report here that nucleolar and cytoplasmic RNA in mammalian cells is recognized specifically by both experimentally induced monoclonal IgG unique for left-handed Z-RNA and by autoimmune mouse monoclonal IgG specific for ribosomal RNA. Nucleolar Z-RNA synthesis, like nucleolar ribosomal RNA synthesis, is inhibited by actinomycin D treatment and dimethylsulfoxide-induced differentiation. Immune anti- Z-RNA IgGs microinjected into living nuclei bind nucleolar RNA, and these complexes appear to be removed from the nucleus within minutes. Cytoplasmically microinjected monoclonal or polyclonal anti- Z-RNA IgGs specifically bind cytoplasmic RNA and inhibit cell multiplication. Microinjection of antibodies directed against double-stranded A-form RNA also inhibits cell growth, indicating physiological roles for both these double-stranded RNAs. Elevated ionic conditions, which in energy-minimized models can cause the walls of the groove in Z-RNA (but not Z-DNA) to approach each other and close, also prevent antibody binding to specific synthetic or cellular Z-RNA determinants. Our antibodies binding unique Z-RNA structures probably recognize antigens determined by the exposed 2′-OH ribose sugarphosphate groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.