Abstract

The olive tree is usually hermaphrodite but self-incompatible. In the Western Mediterranean some cultivars are totally male-sterile. Three different male-sterile phenotypes have been recognised. To infer the genetic basis of male sterility we studied its inheritance and cytoplasmic diversity in wild (oleaster) and cultivated Mediterranean olive. In the cross Oliviere×Arbequina, the male-sterile trait was maternally inherited and affected all progenies. We also checked that both chloroplast and mitochondrial DNAs are maternally inherited. RFLP studies on chloroplast and mitochondrial DNAs revealed several cytotypes: two chlorotypes and four mitotypes in cultivars and oleaster (wild or feral Mediterranean olive). Furthermore, a total linkage desequilibrium between the CCK chlorotype and the MCK mitotype in cultivars and oleaster from different regions supports the fact that paternal leakage of organelles was not observed. The male sterility (ms 2) displayed by Oliviere, plus six other cultivars and three oleaster was strictly associated with the CCK chlorotype and the MCK mitotype. These facts suggest that Oliviere carries cytoplasmic male sterility. Male-fertile and male-sterile oleasters carrying this cytotype showed the presence of restorer alleles. This CMS might be due to a distant cross between olive taxa. The two other male-sterile phenotypes displayed by Lucques (ms 1) and Tanche (ms 3) were associated with the ME1 mitotype but we have not demonstrated CMS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call