Abstract

Leukemia inhibitory factor (LIF) induces growth arrest and macrophage differentiation of mouse myeloid leukemic cells through the functional LIF receptor (LIFR), which comprises a heterodimeric complex of the LIFR subunit and gp130. To identify the regions within the cytoplasmic domain of LIFR that generate the signals for growth arrest, macrophage differentiation, and STAT3 activation independently of gp130, we constructed chimeric receptors by linking the transmembrane and intracellular regions of mouse LIFR to the extracellular domains of the human granulocyte macrophage colony-stimulating factor receptor (hGM-CSFR) alpha and betac chains. Using the full-length cytoplasmic domain and mutants with progressive C-terminal truncations or point mutations, we show that the two membrane-distal tyrosines with the YXXQ motif of LIFR are critical not only for STAT3 activation, but also for growth arrest and differentiation of WEHI-3B D+ cells. A truncated STAT3, which acts in a dominant negative manner was introduced into WEHI-3B D+ cells expressing GM-CSFRalpha-LIFR and GM-CSFRbetac-LIFR. These cells were not induced to differentiate by hGM-CSF. The results indicate that STAT3 plays essential roles in the signals for growth arrest and differentiation mediated through LIFR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.