Abstract
Morphological and biochemical changes indicative of cytoplasmic maturation in relation to nuclear maturation progression and early embryo developmental potential was studied. Fluorescently labeled microfilaments and cortical granules were visualized by using laser scanning confocal microscopy. The mitogen-activated protein (MAP) kinase phosphorylation and cyclin B1 levels were revealed by Western blot. With the maturation of oocytes, cortical granules and microfilaments were localized at the cell cortex. A cortical granule-free domain (CGFD) and an actin-thickening area were observed over both the MII spindle of a mature oocyte and chromosomes of a nocodazole-treated oocyte, suggesting that chromosomes, but not the spindle, determined the localization of CGFD and actin-thickening area. In oocytes that are incompetent to resume meiosis, as indicated by the failure of germinal vesicle breakdown (GVBD), peripheral localization of cortical granules and microfilaments, phosphorylation of MAP kinase and synthesis of cyclin B1 did not occur after 44 hr in vitro. These cytoplasmic changes were also blocked when GVBD of meiotically competent oocytes was inhibited by cycloheximide. Culture of oocytes in a chemically defined medium showed that biological factors such as gonadotropins, cumulus cells and follicle size affected both nuclear and cytoplasmic maturation as well as embryo developmental potential. Absence of gonadotropins or removal of cumulus cells alone did not significantly influence GVBD or cyclin B1 levels, but decreased the final maturation and developmental ability of oocytes. A combination of gonadotropin absence and cumulus removal decreased GVBD, MAP kinase phosphorylation and embryo development. A high proportion of oocytes derived from small follicles were able to resume meiosis, synthesize cyclin B(1), phosphorylate MAP kinase and translocate CGs, but their maturation and embryo developmental ability were limited. Removal of cumulus cells from small follicle-derived oocytes severely affected their ability to undergo cytoplasmic and nuclear maturation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.