Abstract
Two chloramphenicol resistance mutations out of 123 tested in Aspergillus nidulans are inherited extranuclearly as judged by transmissibility in heterokaryons, lack of segregation at meiosis, and independent segregation from all of the eight nuclear linkage groups. They do not recombine with each other. However, experiments in collaboration with G. Turner and R.T. Rowlands show that they do recombine with cytoplasmic mutations to oligomycin resistance (Rowlands and Turner, 1973) and cold-sensitivity (Waldron and Roberts, 1973). These cytoplasmic chloramphenicol resistance mutations are stable and do not affect growth or morphology on antibiotic-free media. Nuclear mutations to chloramphenicol resistance map at a minimum of three loci. At one of these loci, most, but not all, mutations lead pleiotropically to cycloheximide hypersensitivity, and most of these, but not all, also confer pleiotropic hypersensitivity to salicylhydroxamic acid.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.