Abstract

BackgroundPerry syndrome is a rare autosomal dominant disorder clinically characterized by parkinsonism with depression/apathy, weight loss, and central hypoventilation. Eight mutations in DCTN1 gene have been reported. A novel disease model is required because the detailed pathogenesis remains unclear. MethodsTo develop a novel model, we generated induced pluripotent stem cells (iPSCs) from a Perry syndrome patient with F52L mutation in DCTN1, and describe clinical and neuroimaging investigations. We differentiated iPSCs into tyrosine hydroxylase (TH)-positive neurons. Immunocytochemistry analyses of control and mutant were performed. ResultsThe patient displayed levodopa responsive parkinsonism. Dopamine transporter single photon emission tomography showed markedly decreased uptake in the striatum, and metaiodobenzylguanidine cardiac scintigraphy also showed decreased uptake. Perry syndrome TH-positive neurons showed dynactin aggregates in cytoplasm. ConclusionsTH-positive neurons from Perry syndrome iPSCs recapitulated an aspect of the disease phenotype of Perry syndrome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.