Abstract
We have previously shown that the herpes simplex virus tegument protein VP22 localizes predominantly to the cytoplasm of expressing cells. We have also shown that VP22 has the unusual property of intercellular spread, which involves the movement of VP22 from the cytoplasm of these expressing cells into the nuclei of nonexpressing cells. Thus, VP22 can localize in two distinct subcellular patterns. By utilizing time-lapse confocal microscopy of live cells expressing a green fluorescent protein-tagged protein, we now report in detail the intracellular trafficking properties of VP22 in expressing cells, as opposed to the intercellular trafficking of VP22 between expressing and nonexpressing cells. Our results show that during interphase VP22 appears to be targeted exclusively to the cytoplasm of the expressing cell. However, at the early stages of mitosis VP22 translocates from the cytoplasm to the nucleus, where it immediately binds to the condensing cellular chromatin and remains bound there through all stages of mitosis and chromatin decondensation into the G(1) stage of the next cycle. Hence, in VP22-expressing cells the subcellular localization of the protein is regulated by the cell cycle such that initially cytoplasmic protein becomes nuclear during cell division, resulting in a gradual increase over time in the number of nuclear VP22-expressing cells. Importantly, we demonstrate that this process is a feature not only of VP22 expressed in isolation but also of VP22 expressed during virus infection. Thus, VP22 utilizes an unusual pathway for nuclear targeting in cells expressing the protein which differs from the nuclear targeting pathway used during intercellular trafficking.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.