Abstract

Spectral cytopathology (SCP) is a novel approach for diagnostic differentiation of disease in individual exfoliated cells. SCP is carried out by collecting information on each cell's biochemical composition through an infrared micro-spectral measurement, followed by multivariate data analysis. Deviations from a cell's natural composition produce specific spectral patterns that are exclusive to the cause of the deviation or disease. These unique spectral patterns are reproducible and can be identified and used through multivariate statistical methods to detect cells compromised at the molecular level by dysplasia, neoplasia, or viral infection. In this proof of concept study, a benchmark for the sensitivity of SCP is established by classifying healthy oral squamous cells according to their anatomical origin in the oral cavity. Classification is achieved by spectrally detecting cells with unique protein expressions: for example, the squamous cells of the tongue are the only cell type in the oral cavity that have significant amounts of intracytoplasmic keratin, which allows them to be spectrally differentiated from other oral mucosa cells. Furthermore, thousands of cells from a number of clinical specimens were examined, among them were squamous cell carcinoma, malignancy-associated changes including reactive atypia, and infection by the herpes simplex virus. Owing to its sensitivity to molecular changes, SCP often can detect the onset of disease earlier than is currently possible by cytopathology visualization. As SCP is based on automated instrumentation and unsupervised software, it constitutes a diagnostic workup of medical samples devoid of bias and inconsistency. Therefore, SCP shows potential as a complementary tool in medical cytopathology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call