Abstract

Plant height (PH) and ear height (EH) are important traits in maize (Zea mays L.) breeding. Previous research has indicated that these traits are influenced by quantitative trait loci (QTL). However, previous studies attempting to identify the genetic bases of PH and EH have ignored the possibility that cytoplasmic effects and cytonuclear interactions may influence these traits. The objectives of this study were to identify the cytonuclear epistatic QTL and to evaluate the contributions of cytoplasm and QTL × cytoplasm interactions to phenotypic variation of PH and EH. A reciprocal mating design was conducted to generate F2 mapping populations comprising 120 F2 plants from the direct cross (JB × Y53) and 120 F2 plants from the reciprocal cross (Y53 × JB). F2:3 mapping populations were further generated with 91 direct F2:3 families and 120 reciprocal F2:3 families (ten plants per family). The PH and EH of the above F2 and F2:3 mapping populations were evaluated in the same field at the same experimental station in 2007 and 2008. A genetic linkage map with 154 microsatellite markers was constructed, which covered 1,735.0 cM of the maize genome with an average marker spacing of 11.3 cM. A joint-analysis method incorporating the cytonuclear interaction mapping approach was proposed and performed to detect cytonuclear interacting QTL affecting PH and EH. We identified six cytonuclear epistatic QTL affecting PH and five affecting EH. The average phenotypic variance explained by the genetic components of the QTL × cytoplasm interaction for each QTL was 18 % for PH and 9 % for EH. In addition, we observed cytoplasmic effects contributing substantially to phenotypic variance, reaching 9 and 40 % of the phenotypic contributions to PH and EH, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call