Abstract

Using the shuttle vector pBU4, the mosquitocidal toxin gene mtx1 from Bacillus sphaericus strain SSII-1 was introduced into an acrystalliferous strain of B. thuringiensis both individually and in combination with the accessory protein gene p20 and the cytolytic protein gene cyt1Aa from B. thuringiensis subsp. israelensis. Bioassay results indicated that the recombinants B-pMT4(Mtx1) and B-pMT9(Mtx1), both individually containing mtx1, had moderate toxicities to binary toxin susceptible and binary toxin resistant Culex quinquefasciatus larvae during the vegetative growth stage, but that their toxicities declined rapidly during the sporulation phase. The LC50 values were 2.5 and 4.8 mg/ml respectively, against 3-4 instar susceptible and resistant larvae for the final sporulated cultures of recombinants B-pMT9(Mtx1), and little toxicity was detected for B-pMT4(Mtx1). Meanwhile, the recombinant B-pMPX2(Mtx1+Cyt1Aa) expressing Mtx1, P20 alone, and Cyt1Aa in combination had stable toxicities during both the vegetative phase and the sporulation phase, with a LC50 ranging from 0.45-0.58 mg/ml. Furthermore, expression of Cyt1Aa appeared to enhance the activity of Mtx1 to target mosquito larvae, suggesting a synergism between Cyt1Aa and Mtx1 toxins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.