Abstract
BackgroundMillepora alcicornis is a branching hydrocoral common throughout the Caribbean Sea. Like other members of this genus, this species is capable of inducing skin eruptions and blisters with severe pain after contact. In the present study, we investigated the toxicity of the M. alcicornis aqueous extract on several animal models. Considering that some cnidarian hemolysins have been associated to local tissue damage, since they also induce lysis of other cell types, we also made a partial characterization of the hemolytic activity of M. alcicornis aqueous extract. This information is important for understanding the defense mechanisms of the “fire corals”.MethodsThe effects of pH, temperature, and some divalent cations on the hemolytic activity of the extract were assayed, followed by a zymogram analysis to detect the cytolysins and determine their approximate molecular weight. The toxicity of the aqueous extract was assayed in mice, by intravenous administration, and histopathological changes on several tissues were analyzed by light microscopy. The toxicity of the extract was also tested in Artemia salina nauplii, and the damages caused on the crustaceans were analyzed by transmission and scanning electron microscopy.ResultsThe hemolytic activity of the hydrocoral extract was enhanced in the presence of Ca2+ (≥2 mM), Mg2+ (≥6 mM), and Ba2+ (≥0.1 mM); however, it was reduced in the presence of Cu2+ (≥0.1 mM), Zn2+ (≥6 mM), and EDTA (≥0.34 mM). Differences in the pH did not affect the hemolytic activity, but it was temperature-sensitive, since preincubation at ≥ 50 °C sharply reduced hemolysis. The zymogram showed the presence of two types of hemolysins: ~ 28–30 kDa proteins with phospholipase A2 activity and ~ 200 kDa proteins that do not elicit enzymatic activity. The aqueous extract of this cnidarian was lethal to mice (LD50 = 17 μg protein/g), and induced kidney, liver, and lung damages. Under denaturing conditions, the aqueous extract completely lost its toxic and hemolytic activities.ConclusionsThe results showed that the M. alcicornis aqueous extract contains two types of thermolabile hemolysins: proteins of approximately 28–30 kDa with PLA2 activity, while the others are larger proteins of approximately 200 kDa, which do not possess PLA2 activity. Those thermolabile cytolysins, which are stable to pH changes and whose activity is calcium dependent, are capable of inducing damage in lung, kidney and liver tissues, resulting in a slow death of mice. M. alcicornis cytolysins also provoke tissue dissociation in Artemia salina nauplii that might be attributed to pore forming mechanisms.
Highlights
Millepora alcicornis is a branching hydrocoral common throughout the Caribbean Sea
Hemolytic activity The M. alcicornis aqueous extract (0.0001 to 150 μg/mL) produced a concentration-dependent hemolysis on erythrocytes (Fig. 1) that was completely abolished after incubation in boiling water bath for 20 min
Concerning the effect of temperature, it was found that the highest hemolytic activity occurred at 40 to 43 °C, and temperatures lower than 20 °C provoked a decrease in potency and efficiency of the hemolysis (Fig. 2b)
Summary
Millepora alcicornis is a branching hydrocoral common throughout the Caribbean Sea. Like other members of this genus, this species is capable of inducing skin eruptions and blisters with severe pain after contact. Considering that some cnidarian hemolysins have been associated to local tissue damage, since they induce lysis of other cell types, we made a partial characterization of the hemolytic activity of M. alcicornis aqueous extract. This information is important for understanding the defense mechanisms of the “fire corals”. Millepora spp. are commonly known as “fire corals” since they can puncture the human skin and produce lesions similar to burns. These injuries provoke irritation, burning or stinging pain, erythematous and edematous dermatitis, pruritus, hives, and skin necrosis. A clinical case of severe systemic toxicity due to Millepora spp. envenomation has been reported, including nephrotic syndrome, acute renal failure, and pulmonary edema [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Venomous Animals and Toxins including Tropical Diseases
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.