Abstract

Minimally invasive sampling by cytology or core needle biopsy often provides an initial diagnosis for treatment in patients with lung nodules. From these limited specimens, multiple molecular studies are frequently requested. Current guidelines from the US Food and Drug Administration recommend using formalin-fixed paraffin-embedded tissue sections for the detection of anaplastic lymphoma kinase (ALK) gene rearrangement by fluorescence in situ hybridization (FISH). The authors compared alcohol-fixed and formalin-fixed cytology specimens using a novel automated detection for ALK rearrangements by FISH and immunohistochemistry (IHC). ALK FISH testing was performed on 129 lung adenocarcinomas from 71 cytology cases and 58 biopsy/resection specimens using Papanicolaou staining with integrated cytomorphology. IHC with the ALK D5F3 antibody was performed on cases with residual material (88 of 129 cases). The mean age of the patients was 66 years; there were 62 women and 67 men. ALK gene rearrangement was present in 4% of cytology specimens (3 of 71 specimens) and 7% of surgical specimens (4 of 58 specimens). FISH in 13 cases was technically unsuccessful. Of the 7 FISH-positive cases, only 2 cytology cases (4%) and 2 surgical cases (6%) were found to be positive with the ALK antibody, demonstrating 80% concordance. The one case found to be negative for ALK by IHC demonstrated a variant rearrangement of the ALK 2p23 gene locus by FISH. The results of the current study validate the usefulness of alcohol-fixed and/or formalin-fixed cytology specimens for ALK rearrangement by a novel automated FISH method. IHC using the D5F3 antibody for ALK is specific in this limited cohort. The authors also demonstrated that alcohol-fixed cytology specimens can be used for ALK rearrangement by automated FISH, alone or in conjunction with IHC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.