Abstract
Cytokinins are plant hormones with profound roles in growth and development, including control of leaf longevity. Although the cytokinin signal is known to be perceived by histidine kinase receptors, the underlying molecular mechanism and specificity of the receptors leading to delayed leaf senescence have not yet been elucidated. Here, we found that AHK3, one of the three cytokinin receptors in Arabidopsis, plays a major role in controlling cytokinin-mediated leaf longevity through a specific phosphorylation of a response regulator, ARR2. This result was obtained through identification of a gain-of-function Arabidopsis mutant that shows delayed leaf senescence because of a missense mutation in the extracellular domain of AHK3. A loss-of-function mutation in AHK3, but not of the other cytokinin receptors, conferred a reduced sensitivity to cytokinin in cytokinin-dependent delay of leaf senescence and abolished cytokinin-dependent phosphorylation of ARR2. Consistently, transgenic overexpression of wild-type, but not an unphosphorylatable mutant ARR2, led to delayed senescence of leaves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.