Abstract
The ability of Orobanchaceae to establish a parasitic relationship is based on the development of a specific organ called haustorium. Previous studies in Phelipanche aegyptiaca and P. ramosa have underlined the interest of producing calli from germinated seeds as an efficient genetic transformation system, but they also pointed the need to improve the attachment rate of infectious calli to the host plant as well as the seed yield of the regenerated plants following attachment. It was previously shown that haustorium formation in P. ramosa is triggered by cytokinins. The present work demonstrates that one month-old microcalli produced from germinated seeds displayed a response to c/tZ similar to germinated seeds, as shown by the temporal expression profile of markers genes of cytokinin-related haustorium initiation, including PrRR5, PrCKX2, PrCKX4, PrTRN2 and PrZFP6. In addition, a 48 h treatment of microcalli with c/tZ (10−7 M) before infestation triggered a 4-fold increase in the attachment rate of microcalli to tomato roots after 18 days in minirhizotrons when compared to untreated microcalli. Finally, it also outlines that increasing the aggressiveness of microcalli with a c/tZ treatment followed by the transfer of parasitized tomato plants into pots significantly improved seed yield of regenerated P. ramosa plants. Indeed, high amounts of viable seeds which germinated at more than 90% in response to GR24 were harvested after a 10 weeks-co-cultivation period. According to these results, cytokinin treated P. ramosa microcalli thus appear to be a good tool for further functional studies in holoparasitic plants, especially on haustorium formation. Cytokinin treated microcalli show a high ability to attach to host roots and to regenerate seed-producing plants. They are of great interest for functional studies especially for studying haustorium formation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.